- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Kestner, Daniel (4)
-
Kostinski, Alexander (3)
-
Kostinski, Alex (1)
-
Vivekanandan, Jothiram (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the question of monitoring polarization purity, that is, measuring deviations from orthogonalityδτandδϵof an ostensibly orthogonal polarization basis with a reference channel of ellipticityϵand tiltτ. A simple result was recently derived for a phase-sensitive receiver observing unpolarized radiation [IEEE Trans. Geosci. Remote Sens.62,2003610(2024)10.1109/TGRS.2024.3380531]: withρ(1)denoting the Pearson complex correlation coefficient between channelcomplex fields, it states that ∓cos(2ϵ)δτ±iδϵ≈ρ(1)whenδτ,ϵ≪1. However, phase-sensitive (in-phase and quadrature) data are seldom available at optical frequencies. To that end, here we generalize the result by deriving a new equation for the polarization “alignment” error:cos2(2ϵ)δτ2+δϵ2≈ρ(2), whereρ(2)is the intensity cross-correlation coefficient. Only the measurement of the(real) intensitycross-correlation coefficient is needed when observing unpolarized light. For the special case of a linearly polarized basis, the tilt error is simplyδτ≈ρ(2), and for the circular basis case, with ellipticity deviationδϵfrom circular helicityπ/4 (the reference channel of opposite helicity),δϵ≈ρ(2). These results provide simple means to gauge the quality of polarimeters and depolarizers.more » « less
-
Kestner, Daniel; Kostinski, Alex (, Physical Review E)
-
Kestner, Daniel; Kostinski, Alexander (, Physical Review A)
-
Kostinski, Alexander; Kestner, Daniel; Vivekanandan, Jothiram (, IEEE Transactions on Geoscience and Remote Sensing)
An official website of the United States government
